Scientists have created such a mobile skin bioprinting system — the first of its kind — that allows bi-layered skin to be printed directly into a wound. The bioprinter, filled with a patient’s own cells, can be wheeled right to the bedside to treat large wounds or burns by printing skin, layer by layer, to begin the healing process.
The major skin cells – dermal fibroblasts and epidermal keratinocytes – are easily isolated from a small biopsy of uninjured tissue and expanded. Fibroblasts are cells that synthesize the extracellular matrix and collagen that play a critical role in wound healing while keratinocytes are the predominant cells found in the epidermis, the outermost layer of the skin.
The cells are mixed into a hydrogel and placed into the bioprinter. Integrated imaging technology involving a device that scans the wound, feeds the data into the software to tell the print heads which cells to deliver exactly where in the wound layer by layer. The bioprinter deposits the cells directly into the wound, replicating the layered skin structure, and accelerating the formation of normal skin structure and function.
The researchers demonstrated proof-of-concept of the system by printing skin directly onto pre-clinical models.