Ultrasound technology could soon be improved to produce high-quality, high-resolution images, thanks to the development of a new key material by a team of researchers in the Department of Biomedical Engineering at Texas A&M University, College Station.

The engineered material, known as a "metamaterial," offers significant advantages over conventional ultrasound technology, which generates images by converting ultrasound waves into electrical signals. But ultrasound is still largely constrained by bandwidth and sensitivity limitations, which have been an obstacle in producing high-quality images as diagnostic tools

The metamaterial is not subject to those limitations, primarily because it converts ultrasound waves into optical signals, rather than electrical ones. The optical processing of the signal does not limit the bandwidth or sensitivity of the transducer (converter), allowing greater detail.

The material consists of golden nanorods embedded in a polymer known as polypyrrole. An optical signal is sent into this material where it interacts with and is altered by incoming ultrasound waves before passing through the material. A detection device would then read the altered optical signal, analyzing the changes in its optical properties to process a higher resolution image.

The material is the result of a collaborative effort by Texas A&M researchers and those from King's College London, The Queen's University of Belfast, Ireland, and the University of Massachusetts Lowell.

Source