About a million Americans with injury or age-related disabilities need someone to help them eat. Now NIBIB funded engineers have taught a robot the strategies needed to pick up food with a fork and gingerly deliver it to a person’s mouth.
The researchers’ named the robot ADA, which refers to its Assistive Dexterous Arm, is reported in the April Issue of IEEE Robotics and Automation Letters. Early in the design of ADA, the engineers realized they had to start from the ground up. In this case ground zero was skewering pieces of food onto a fork. They began by watching, measuring, and cataloguing how people do it. Not entirely surprising to trained engineers, different skewering strategies were employed based on the size, shape, stiffness, pliability, and other physical properties of foods that included strawberries, banana pieces, melon cubes, strips of celery, and baby carrots.
The team used the data collected on the strategies people use to eat different foods to program ADA to accurately identify each item on a plate, and then perform the optimal movements that result in successfully skewering each item and delivering it to the recipient’s mouth. For example, unlike a strawberry, which is sturdier, the softness of a piece of banana required skewering at an angle to avoid the piece simply sliding off the fork.
Strips of celery required a specific approach for both skewering and delivering the food to the mouth properly. The robot was taught to stick the fork into one end of the strip, and then lift and turn the piece so that the opposite end of the celery, clear of the fork’s sharp tines, was cleanly presented to the recipient.
The group’s work is aimed at helping people who are unable to perform essential tasks live more independently. ADA can also be a help to often overtaxed caregivers, who, in this case could set up the food and robot and then attend to other tasks or focus on socializing with the clients.