Stories
Briefs: Materials
By using an electrochemical etching process on a common stainless-steel alloy, researchers have created a nanotextured surface that kills bacteria while not harming...
R&D: Robotics, Automation & Control
Researchers Use Water to Improve Nanowires
Rice University graduate students and researchers have made nanowires between 6 and 16 nanometers wide. The wires are made from a variety of materials, including silicon, silicon dioxide, gold, chromium, tungsten, titanium, titanium dioxide, and aluminum. The development of sub-10-nanometer sizes...
Briefs: Materials
A team of researchers at Yale University assessed the “criticality” of all 62 metals on the Periodic Table of Elements, and developed key insights into which materials might...
Features: Manufacturing & Prototyping
With the recent release of the U.S. Food and Drug Administration’s final unique device identifier (UDI) ruling, the race is on for medical manufacturers to comply with the newly proposed...
Top Stories
INSIDER: Medical

New Material Solves Pressure Problem for Wearables
Features: Design

Consider Phase Zero: The Importance of DFX to Meet Deadlines, Deliverables
INSIDER: Medical

Polymer-Based Prefillable Syringes Drive Down Costs
INSIDER: Sensors/Data Acquisition

Stretchable, Wearable Patch for Cardiac Ultrasound
INSIDER: Medical

Sensor Detects Early Alzheimer's Disease
INSIDER: Medical

Ask the Expert
Eric Dietsch on the Benefits of Nitinol Wire

In collaboration with the Fort Wayne Metals Engineering team, Eric Dietsch focuses on supporting customers with material recommendations, product development, and education. Eric is available to help you and your company with any Nitinol-related questions or needs that you may have.
Webcasts
Webinars: Manufacturing & Prototyping

How to Maximize the Benefits of Medical Device Onshoring
Webinars: Sensors/Data Acquisition

Developing the Ultimate Medical Sensor Technology
Webinars: Power

Precision Pulsed High Voltage: Electroporation Enabling Medical and Life...
On-Demand Webinars: Medical

Product Development Lifecycle Management: Optimizing Quality, Cost, and Speed...
On-Demand Webinars: Medical

Medical Device Biofilms: Slimy, Sticky, Stubborn, and Serious
On-Demand Webinars: Medical

Artificial Intelligence and Machine Learning: Making Medical Devices Smarter
Inside Story
Rapid Precision Prototyping Program Speeds Medtech Product Development
Rapid prototyping technologies play an important role in supporting new product development (NPD) by companies that are working to bring novel and innovative products to market. But in advanced industries where products often make use of multiple technologies, and where meeting a part’s exacting tolerances is essential, speed without precision is rarely enough. In such advanced manufacturing—including the medical device and surgical robotics industries — the ability to produce high-precision prototypes early in the development cycle can be critical for meeting design expectations and bringing finished products to market efficiently.
Trending Stories
INSIDER: Sensors/Data Acquisition

Sensor Detects Early Alzheimer's Disease
Applications: Medical

Embedded System Design and Development for ARM-Based Laboratory Analyzers