Scientists at Georgia Institute of Technology, Atlanta, have invented a self-charging power cell that directly converts mechanical energy to chemical energy, storing the power until it is released as electrical current. By eliminating the need to convert mechanical energy to electrical energy for charging a battery, the new hybrid generator-storage cell utilizes mechanical energy more efficiently than systems using separate generators and batteries.

The power cell consists of a cathode made from lithium-cobalt oxide (LiCoO2) and an anode consisting of titanium dioxide (TiO2) nanotubes grown atop a titanium film. The two electrodes are separated by a membrane made from poly(vinylidene fluoride) (PVDF) film, which generates a piezoelectric charge when placed under strain. When the power cell is mechanically compressed, the PVDF film generates a piezoelectric potential that serves as a charge pump to drive the lithium ions from the cathode side to the anode side. The energy is then stored in the anode as lithium-titanium oxide.

By harnessing a compressive force, such as a shoe heel hitting the pavement from a person walking, the power cell generates enough current to quickly power a small calculator. A hybrid power cell the size of a conventional coin battery can power small electronic devices – and may be useful for soldiers who could one day recharge battery-powered equipment as they walked.

Beyond the efficiencies that come from directly converting mechanical energy to chemical energy, the power cell could also reduce weight and space required by separate generators and batteries. The mechanical energy could come from walking, the tires of a vehicle hitting the pavement, or by harnessing ocean waves or mechanical vibrations.

Source