Researchers are creating new tools for a method called optogenetics, which shines light at specific neurons in the brain to excite or suppress activity. Optogenetics experiments are aimed at increasing understanding of how the brain works, allowing scientists to develop and test potential cures for illnesses such as neurodegenerative diseases.

The wireless battery-free device, which is implanted just under the skin, is as thin as a sheet of paper and about half the diameter of a dime. (Credit: University of Arizona)

They’ve demonstrated an untethered light-delivery tool to enable seamless optogenetics in the brain — the first wireless transcranial optogenetic simulation device that can send light through the skull rather than physically penetrating the blood-brain barrier. The transcranial technique is done using a wireless and battery-free device that’s as thin as a sheet of paper and about half the diameter of a dime, implanted just under the skin.

The breakthrough of a more powerful light delivery method improves scientists’ ability to study subjects under more natural conditions. Because it doesn’t require invasive probes, it also makes optogenetics research more accessible. Now, even labs without a sophisticated array of surgical equipment can help advance the field.

For more information, visit here .


Medical Design Briefs Magazine

This article first appeared in the September, 2021 issue of Medical Design Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.