Grand Prize Winner


Alydaar Rangwala, Nikhil Mehandru,
Aaron Perez, and Brandon Sim
Theratech, Loudonville, NY

Existing methods for administering chemotherapy drugs have been primarily through intravenous delivery via a complex and costly pole-based infusion pump setup. These setups are needed to administer complex drug schedules, and, as a result, infusion pumps have prevented treatment for early-stage cancers from becoming widely accessible.

To find a better solution, four Harvard University students from several disciplines have founded Theratech, and introduced the ChemoPatch™, a low-cost, disposable, and electronic patch-base cancer chemotherapy device designed to be simple, automated, and easy-to-use by cancer patients outside of the hospital, yet cutting-edge in its ability to deliver early-stage chemotherapy.

Iontophoretic electronic technology was first introduced to the market in the 2000s as an alternative to infusion-based set-ups, but was never proven to adequate for two main reasons: it requires chemotherapy infusion drugs to be reformulated for storage in the iontophoretic patch reservoir, and it only allows for one drug at a time.

The ChemoPatch fills both of these technology gaps at a much lower price. Chemotherapy drugs can be loaded as they currently exist and the ChemoPatch is able to administer up to three different chemotherapy drugs in select doses and at specific time intervals. Additionally, drug delivery is automated, allowing patients to reduce the frequency of hospital visits.

This innovative technology is the result of employing cutting-edge microfabrication resources at the Harvard School of Engineering and Applied Sciences. Specifically, the ChemoPatch costs of four components:

  • a novel, patent-pending micropump for drug delivery,
  • a drug reservoir that contains up to three separate chemotherapy drugs,
  • a microneedle array for painless administration of drugs, and
  • a simple microcontroller-based electronic circuit for complex programmable delivery scheduling.

At the heart of the ChemoPatch is the patent-pending plastic-based and low cost micropump technology. Theratech has developed the first highly accurate micropump that is completely plastic-based, allowing for the first truly disposable micropump- based patch technology for drug delivery.

In order to demonstrate the viability of the ChemoPatch, Theratech is conducting a pilot study of early-stage breast cancer in India within the next 12 months. With more than 115,000 new diagnoses in India each year, there is a sizeable need for better treatment. The company plans to introduce the ChemoPatch in the US pending regulatory approval. The end goal is to bridge the gap between technology and costeffectiveness in high-quality first-line cancer care, making it accessible for all.

For more information, visit: .

Medical Category Winner


James Dieffenderfer, Mike Brown,
and Leigh Johnson,
North Carolina State University,
Raleigh, NC

More than 25 million Americans have been diagnosed with asthma, and it ranks as one of the top five most expensive diseases, costing the US more than $63 billion annually. While more than 60% of asthmatics own a peak flow meter (PFM); only about 35% actually it. Regular use of a reliable PFM and monitoring of one’s respiratory vitals would create a better asthma management plan, and in turn, reduce the effects and severity of their asthma.

The Vitalflo device offers a reliable monitoring solution to help consumers monitor their breathing, while delivering an education solution showing the best ways to manage and treat changes in their breathing through integration with their smartphone. It fills current unmet needs by utilizing the most accurate lung capacity measurements, reducing overall device size for ease of transport and storage, integrating wireless technology to seamlessly transmit data to any smart phone or PC, functioning fully as a standalone device, and offering a dashboard of additional features and benefits.

James Dieffenderfer, team leader, said: “The problem of asthma treatment and prevention stood out to us because of the vast amount of people that are affected by this disease. We wanted to somehow bridge the apparent gap that exists between patient and physician to increase the efficacy of treatment. After a series of interviews, we narrowed our focus to creating an improved peak flow meter, one that meshed well with current technology. It wasn’t until halfway through the design process that we discovered that Vitalflo could also be used as a spirometer. This enables us to help an even larger amount of people, including those suffering from COPD. We started on this project with the belief that we could improve the lives of millions of people and it remains our motivation to this day.”

This project was backed by the Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST) at North Carolina State University ( ). Dieffenderfer explained that the entire Vitalflo project actually started from the Product Innovation Course, which allowed the research team to be mentored by faculty at the ASSIST Center. The device was conceived using situational analysis tools, moved to product development, then engineering through technical advancements.

For more information, visit . To see a video of this technology, visit

Medical Design Briefs Magazine

This article first appeared in the November, 2013 issue of Medical Design Briefs Magazine.

Read more articles from the archives here.