Still a relatively young technology, abrasive waterjet has evolved to the point where it offers substantial benefit to some manufacturers of surgical instruments and a broad variety of other medical applications. With the ability to hold positioning accuracy as tight as ±0.001" and ongoing technological advances in micronozzles and the ability to cut angles, an increasing number of medical manufacturers are adopting abrasive waterjet machines to boost the productivity of their operations.

Fig. 1 – The evolution of abrasive waterjet technology has allowed for efficient primary machining of small medical parts with highly detailed features, such as this component of a medical clamp used during surgeries.
Contrary to common belief among non-users, water does not actually perform the cutting on abrasive waterjet machines. Rather, it acts as a delivery vehicle for miniscule abrasive particles known as garnet, which are accelerated to supersonic speeds to provide highly productive cutting via erosion distantly akin to a grinding process.

All abrasive waterjets share the same basic components. A pump sends water to the nozzle, where it passes through a small-diameter jewel orifice to form a narrow jet. This then passes through a small mixing tube where the Venturi effect creates a slight vacuum that pulls garnet and air into the jet of water. Typically, a hopper feeds garnet to the system. Imbued with abrasive particles, the jet exits the nozzle and cuts whatever material has been loaded onto the machine.

Benefits for Medical Manufacturers

Abrasive waterjet’s chief benefit comes in the form of increased productivity. Compared to traditional metal-cutting processes, it offers substantially higher cutting speeds with less time-consuming setups. The process is straight-forward. An operator simply uploads a drawing of the part and specifies the material being cut and required tolerances. Onboard software automatically calculates the tool paths, then creates and executes the corresponding cutting data. The speed and ease with which a part can be set up and cut provides an excellent alternative for prototyping applications as well as larger runs of components.

The ability to cut a broad range of materials also proves highly beneficial to many medical manufacturers. Other than letting the controller know of the material change, there are no other programming or equipment steps required to accommodate cutting metals, composites, ceramics, and other materials. Depending on the material and its thickness, the software controller automatically adjusts the speed of the X- and Y-axes to maximize productivity while maintaining the needed quality.

Abrasive waterjet also holds key advantages compared to other cutting processes. Both laser and electrical discharge machining (EDM) technologies create heat-affected zones in the workpiece being cut. This can cause surface hardening and alter the chemical properties of the material. As a cold cutting process, abrasive waterjet offers immunity from these effects. At the same time, it offers an environmentally superior alternative over photo-chemical etching, which usually produces toxic and/or hazardous waste. Lastly, abrasive waterjet exerts a very small amount of force on the workpiece being cut, especially when compared to traditional metalcutting or stamping equipment. This allows the cutting of delicate features that would otherwise prove impossible or too costly to produce.

In its early days, abrasive waterjet often could not achieve the tolerances needed for many medical applications. This no longer holds true for parts requiring down to 0.002" tolerances. Even for higher precision work, the technology can provide substantial benefit by quickly cutting near-net parts that are then finished with an ancillary process. The same applies to part geometries beyond the relatively flat dimensions that abrasive waterjet can produce, although the recent development of new bevel-cutting nozzle accessories has expanded the geometries that the technology can produce outright.

Micro-Meso Abrasive Waterjet Machining

Fig. 2 – Micro-meso machining with abrasive waterjet can enable the production of very small orthopedic implants such as these, which were cut using a micronozzle.
Emerging innovations in the field will prove to be of immense interest to manufacturers producing surgical instruments or other components that require extreme levels of accuracy and precision. In particular, the development of micronozzles holds the promise of allowing the productivity and cost benefits of abrasive waterjet to apply to a wider range of medical applications. OMAX Corporation (Kent, WA) was awarded a Phase II grant (Grant #1058278) in the National Science Foundation’s (NSF) Small Business Innovation Research (SBIR) program to further development of micronozzles for abrasive waterjet. This follows successful completion of Phase I and Phase I-B research (Grant #0944239) conducted by the company in partnership with industrial and academic collaborators, including the Precision Engineering Research Group (PERG) at MIT.

Through Phase I and Phase I-B research, OMAX demonstrated the feasibility of performing micro-meso abrasive waterjet machining, which is defined as producing features down to 0.002" in size. Involving more than mere positioning accuracy and the ability to hold the necessary tolerances, micro-meso machining requires creation of a cutting stream with a beam diameter of just 0.002"–0.004". Traditionally, the minimum beam diameter that could be achieved was around 0.012", allowing the cutting of features from 0.012"–0.015" in size.