Researchers have laid the groundwork for a soft robotic tool and control system that could grant surgeons an unprecedented degree of maneuverability within the brain. A recent study demonstrates that the new system is both intuitive and highly accurate. The early results suggest that, with further development, the robot could one day speed up and improve the efficacy of minimally invasive surgeries for life-threatening brain aneurysms and other serious conditions.
The researchers designed an air pressure operated — or pneumatic — catheter tip that they 3D printed using a soft and flexible resin. The design includes two hollow channels running in parallel along the length of the tip, which, if pressurized individually, causes the tip to deflect to either the left or the right.
While the catheter tip itself was inspired by existing designs, the authors sought to address a need that those previous robotic systems had not yet tackled — a control system that would fit well into the current clinical workflow.
The team developed a hand dial that allows for precise adjustments of the tip’s position, providing more control than rotating a pre-bent tip. Additionally, the dial offers haptic feedback that indicates when the tip is bent. With this system, the researchers grant the ability to simultaneously move a catheter forward with one hand while adjusting the angle of the tip with the other. (Image credit: Noah Barnes, PhD Student, department of mechanical engineering, Johns Hopkins University)
For more information, visit here .