Researchers investigated the effects of bioactive glass doped with ionic silver on biofilms formed by Pseudomonas aeruginosa, a multi-drug resistant bacterium that easily forms biofilms and is a common cause of infection in chronic wounds. (Credit: University of Birmingham)

When impregnated into bioactive glass, silver retains antimicrobial activity longer. Researchers have shown for the first time how this promising combination delivers more long-lasting antimicrobial wound protection than conventional alternatives.

Bioactive glasses are a unique class of synthetic biomaterials made from silicone and have been used for some years in bone grafting.

Silver has long been known to prevent or reduce the growth of biofilms (communities of bacteria) in open wounds, and silver-based treatments are increasingly popular as they are effective against many antibiotic-resistant strains of bacteria. These antimicrobial properties depend on silver remaining in an ionic form so it can penetrate bacterial cell walls and disrupt their life cycle, but the silver ions or nanoparticles in wound dressings are prone to transforming to silver sulphide or silver chloride — which can reduce antimicrobial activity and hinder the success of treatment.

The researchers investigated the effects of bioactive glass doped with ionic silver on biofilms formed by Pseudomonas aeruginosa, a multi-drug resistant bacterium that easily forms biofilms and is a common cause of infection in chronic wounds.

The study showed that specific preparation, storage, and application techniques can minimize the transformation of silver ions to silver chloride and so retain antimicrobial activity. In this application, the critical aspects of bioactive glass are its fibrous form, which gives a 3D porous structure that is robust and packable, and the diameter and density of the glass fibers to support tissue growth.

Source