Guide to FDA Requirements and Importance of Medical Device Calibration
Engineers Design Color- Changing Compression Bandage
Improved 3D Printing for Patient-Specific Medical Diagnosis
Data, Data Everywhere: Why the Medical Device Industry Must Embrace the Fourth Industrial Revolution
Implantable Islet Cells Come with Their Own Oxygen Supply
Evaluating Electronics Contract Manufacturers for Medical Devices
Two-Component Molding Can Solve Medical Design Challenges and Reduce Costs
Therapeutic Gel Shows Promise Against Cancerous Tumors
Scientists Develop Elastic Metal Rods to Treat Scoliosis
Key Factors for Choosing Silicone Solutions in Medical Device Lubrication
News
A new sensor could detect early-stage Parkinson’s disease from a patient’s breath. (Credit: adriaticfoto/Shutterstock.com)

Researchers have tested a sensor to detect early-stage Parkinson’s disease from the breath of patients. The device it has potential as a small, portable system to screen at-risk individuals without the need for highly trained specialists.

previously developed a device with an array of 40 sensors based on gold nanoparticles or single-walled carbon nanotubes. Each sensor had a different chemical attached that could bind certain volatile molecules in the breath, and this binding changed the electrical resistance of the sensor. The device detected differences in the exhaled breath of people already being treated for Parkinson’s disease and healthy controls. Now, they wanted to see if the device could detect differences in the breath of patients with early-stage, not-yet-treated Parkinson’s disease.

The researchers tested the device on the exhaled breath of 29 newly diagnosed patients who had not yet begun taking medication for their illness. When comparing the sensor output to that of 19 control subjects of similar age, they found that the array detected early Parkinson’s disease with 79 percent sensitivity, 84 percent specificity and 81 percent accuracy, which was better than a diagnostic smell test and almost as good as an ultrasound scan of the brain.

Source