Key Factors for Choosing Silicone Solutions in Medical Device Lubrication
Real-Time Diagnostics: Fast, Mobile, Health-Focused Information
The Digital Future of Medical Device Development
Small Sensor Array Offers Easier Way to Image Brain
Microextrusion Tubing Advances Help Push Medical Device Boundaries
Adapting Prototyping to Meet Rapid Advances in Medical Device Designs
Designing for Mechanical and Signal Integrity in Handheld Medical Treatment Applications
New Device Helps Diagnose and Treat Neurodegenerative Diseases
ADHESIVES: The Importance of CTE for Assembly Reliability
Hydrogel Material Improves Success of Transplanting Islet Cells
News
The simulation shows molecules struck by light causing the 2D nanosheet to expand. )Credit: Richard Remsing, PhD, Temple University)

Engineers discovered that tiny crystal lattices called “self-assembling molecular nanosheets” expand when exposed to light.

The advancement could form the backbone of new light-powered actuators, oscillators, and other microscopic electronic components useful in the development of artificial muscles and other soft robotic systems.

The work centers on a materials science concept known as photostriction, which means turning light directly into mechanical motion, says the study’s co-lead author Shenqiang Ren, a researcher at the University at Buffalo’s RENEW Institute, which works to solve complex environmental problems.

“In this case, we’re using light — anything from sunlight to a simple laser — to cause the two-dimensional nanosheet to expand at an incredibly fast rate,” he says.

How fast? Sub-milliseconds. The process is aided by the photostrictive effect, which essentially bypasses the need to create electricity to move something, says Ren, PhD, a professor in the Department of Mechanical and Aerospace Engineering in the UB School of Engineering and Applied Sciences.

The nanosheet — made of the molecular charge-transfer compound DBTTF and buckyball molecules) — can expand up to 5.7 percent of its original size, according to the study.

While that may not sound like much, consider this: a 200-pound man that expands 5.7 percent would need to add 11.4 pounds in less than a second to keep pace with the light-triggered nanosheet.

Expandable water toys grow much more than that, but they do not revert to their original size. By contrast, the nanosheet does, making it potentially very useful as a light-induced actuator in artificial muscles, which has applications in everything from medical devices to industrial robotics.

Source