Guide to FDA Requirements and Importance of Medical Device Calibration
Engineers Design Color- Changing Compression Bandage
Improved 3D Printing for Patient-Specific Medical Diagnosis
Data, Data Everywhere: Why the Medical Device Industry Must Embrace the Fourth Industrial Revolution
Implantable Islet Cells Come with Their Own Oxygen Supply
Evaluating Electronics Contract Manufacturers for Medical Devices
Two-Component Molding Can Solve Medical Design Challenges and Reduce Costs
Therapeutic Gel Shows Promise Against Cancerous Tumors
Scientists Develop Elastic Metal Rods to Treat Scoliosis
Key Factors for Choosing Silicone Solutions in Medical Device Lubrication
News
Probe may help researchers find better treatments to prevent drug-induced overheating of the brain. (Credit: University of Adelaide)

Researchers have invented a world-first tiny fiber-optic probe that can simultaneously measure temperature and see deep inside the body.

The probe may help researchers find better treatments to prevent drug-induced overheating of the brain, and potentially refine thermal treatment for cancers.

“With an outer diameter of only 130 µm, the probe is as thin as a single strand of human hair,” says Dr Jiawen Li, a researcher with the Adelaide Medical School, ARC Centre of Excellence for Nanoscale Biophotonics (CNBP) and the Institute for Photonics and Advanced Sensing (IPAS) at the University of Adelaide.

“This means it can be delivered deep inside the body in a minimally invasive way. It also allows us to see and record physiological data in real time that we weren’t able to access before.

The probe’s imaging function during experiments, our medical collaborators would be able to see deep inside the brain of a living organism and guide the placement of the probe to the right brain region.”

“Then, they can use the probe’s built-in thermometer to monitor any changes to the local temperature of that region.”

This will allow researchers to: better understand how hyperthermia develops; test new medical treatments; or investigate the toxicology impacts of drug-taking.

The probe also has potential to provide insights into other diseases and treatments in other parts of the body, such as optimizing thermal treatment of cancers.

The first generation of the probe can both take images and measure temperature, Dr Li hopes future generations will take other measurements as well – such as pH values, oxygen saturation and accumulation of fat in arteries.

Source