Four lasers can be used for micro welding: pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG), continuous wave (CW) fiber, quasi continuous wave (QCW) fiber, and nanosecond fiber. Each laser type offers unique features that work best for specific applications. This article presents a comparison of the pulsed Nd:YAG laser with the three fiber laser options and discusses why and when one might be chosen over the other. In some cases, several options may work; in that case, cost of ownership and serviceability can tip the scales.

Fig. 1 - Nd:YAG laser welding. Wire-to-ring spot weld (a); electrical connections (b); medical tool weld (c).

Nd:YAG – Peak Powers and Pulse Widths Perfect for Micro Welding

With the Nd:YAG laser, the active gain medium is neodymium, which is doped into a host crystal of yttrium aluminum garnet. This solid rod of material is typically 0.1–0.2 in. in diameter and around 4 in. long. Micro welding Nd:YAG lasers are optically pumped using flashlamps and typically emit light with a wavelength of 1064 nm, but can be frequency doubled (532 nm, green). The laser’s optical design is relatively simple; its heart is the power supply that drives and controls the flashlamp voltage and allows precise control of peak power and pulse width during the laser pulse using internal optical feedback.

Having excellent pulse control, the Nd:YAG laser also offers high peak power in small laser sizes, which enables welding with large optical spot size. This translates to maximized part fit-up and laser to joint alignment accommodation. An example is a 25 W laser that can provide 6 kW of peak power, sufficient to weld steel and aluminum with a 600 μm spot size.

The pulsed Nd:YAG laser has been around for many decades and has by far the largest install base. In today’s laser landscape, it is best suited to spot welding application under 0.02-in. penetration and seam welding heat-sensitive packages. Figure 1 includes a few examples of Nd:YAG laser welding.

Fiber Lasers – Great Focusability with Selectable Beam Quality

Fig. 2 - Schematic of single-mode and multi-mode fiber lasers.

A fiber laser is generated within a flexible doped glass fiber that is typically 10–30 ft long and between 10 and 50 μm diameter. Ytterbium is used as the doping element because it provides good conversion efficiency and a near 1 μm output wavelength, which matches well with existing laser delivery components. The laser is generated wholly within a fiber, so there is no need to align the medium to cavity mirrors, nor is it necessary to maintain optics and alignment as with the pulsed Nd:YAG laser. The very efficient lasing process means the fiber laser can be small and air-cooled and can provide high wall plug efficiencies.

The fiber laser’s unique characteristics are its focusability and its range of range of beam qualities, which can be tuned for each welding application. The two ends of the beam quality spectrum are single mode and multi mode. Single mode is defined by a beam quality or M2 less than 1.2, while multi mode is generally above M2 of 2. The mode defines how well the laser can be focused and the power density distribution across the laser. Figure 2 is a schematic of single-and multi-mode fiber lasers.

Fig. 3 - Beam quality effect on weld for a single-mode and multi-mode laser. A 500 W single-mode fiber laser with an M2 value of 1.2 at 300 in. per minute (IPM) with a 30 μm spot size (a); a 700 W multi-mode laser with an M2 value of 15 at 100 IPM with a150 μm spot size (b); and a 1 kW multi-mode fiber laser with an M2 value of 15 at 80 IPM with a 250 μm spot size (c).

The differences between singlemode and multi-mode lasers are shown in Figure 3. All welds are shown in 0.06-in.-thick stainless steel — (a) represents a 500 W single-mode fiber laser with an M2 value of 1.2 at 300 in. per minute (IPM) with a 30 μm spot size; (b) shows a 700 W multi-mode laser with an M2 value of 15 at 100 IPM with a150 μm spot size; and (c) shows a 1 kW multi-mode fiber laser with an M2 value of 15 at 80 IPM with a 250 μm spot size.

Continuous Wave Fiber Lasers

For high-speed seam welding applications, a continuous wave (CW) fiber laser is operated in continuous wave mode, which means that the laser output remains on until being turned off. For spot welding either a single weld or a seam, the laser output can be pulsed or, more correctly, modulated — turning the laser on and off rapidly. The CW laser’s peak power is the same as its maximum average power, so focused spot sizes are generally under 100 μm to attain sufficient power density for welding with power levels under 1 kW. Due to the small optical spot size, lap and fillet weld geometries are preferred.

Fig. 4 - CW fiber laser applications. High-speed welding of copper tabs to steel battery cans (a); coil welding with sub 100 μm spot welds (b); welding airbag detonators.
Fig. 5 - QCW fiber laser examples. Cross section of 0.06 in. deep weld for thick aluminum package seam sealing (a); guidewire weld (b); sensor seam weld (c).

Butt welding is possible if there is good part fit-up or if a seam location vision system is used. An alternative is using a scan head that can create motion lateral to the weld direction, known as wobble, which can effectively widen the weld to decrease joint alignment sensitivity.

CW fiber lasers are well suited to general seam welding up to 0.06-in. depth for a 500 W laser, high-speed seam welding of same and dissimilar materials, and producing spot welds under 100 μm in diameter. Figure 4 includes examples of CW fiber laser applications.

Quasi-Continuous Wave Fiber Lasers

The quasi-continuous wave (QCW) fiber laser’s peak power and pulse width characteristics are similar to those of the Nd:YAG laser, though the parameter range is not quite as broad. Similar to CW fiber lasers, the QCW lasers offer singlemode to multi-mode options with spot sizes from 0.001 to 0.04-in. as needed for the application. These lasers also shine in small spot size applications and penetration applications, although they do provide a fairly comprehensive coverage of many micro welding applications. Figure 5 shows some QCW fiber laser application examples.

Nanosecond Fiber

The nanosecond fiber laser is a more recent addition to the lasers offered for welding. It is the same laser used for laser marking applications and is a very cost-effective option that can be repurposed very effectively for certain welding applications. The nanosecond laser provides multi-kilowatt peak power, but with pulse widths around 60–250 nanoseconds that can be delivered between 20 and 500 kHz. This high peak power enables welding of almost any metal, including steels, copper, and aluminum. The very short pulse widths enable very fine control for welding small parts, as well as the ability to weld dissimilar materials. See Figure 6 for examples of nanosecond fiber laser applications.

Summary

Fig. 6 - Nanosecond fiber laser applications. Low-volume battery tab welding (a); top view of weld 0.0008 in. thick foil; cross section of seam weld using the wobble function in 250 μm thick titanium.
Fig. 7 - Peak power and pulse width.

While there are a number of laser choices for micro welding, the CW fiber and nanosecond fiber lasers have distinct application specialties. Nd:YAG is the established source, with great all around micro welding capability. CW fiber lasers provide excellent speed and penetration characteristics and the ability to weld conductive and dissimilar materials, while QCW fiber offers similar capability to the Nd:YAG laser, with additional small spot and penetration features. Finally, the nanosecond laser provides great control using sub-400 nanosecond pulses for thin materials and fine spot applications, as well as some dissimilar materials bonding. Table 1 provides a general summary of the characteristics of lasers for micro welding. The information can be used to help determine which laser is the best option for a particular application.

Table 1 – Summary of lasers for micro welding.

CW lasers are simply turned off and on as needed, but can be modulated to provide a pulsed output. Nd:YAG and QCW fiber lasers are typically 0.2–4 kW peak power and 0.1-10 ms pulse width. Ns fiber lasers operate at around 10 kW peak power and 60–200 nanosecond pulse widths. Figure 7 shows each laser’s peak power and pulse width regimen.

The most interesting matchup is the Nd:YAG and the QCW fiber laser, which offer similar welding capabilities; both have high peak power and millisecond pulse widths for large diameter (>200 μm) spot and seam welding. The Nd:YAG laser has been around forever and has a massive install base and enduser familiarity, while the QCW laser is the relative newcomer with some strong cost-of-ownership features. From a welding perspective, they are quite close; points of consideration that tip the scale are the cost of ownership and service-ability. The QCW laser does not use flashlamps, which reduces maintenance costs. The Nd:YAG laser is fully service-able in the field. The choice then can become somewhat of an equipment preference, driven by whether the user requires a laser that is cheaper to run or one that can be maintained 24/7.

This article was written by Geoff Shannon, PhD, Manager of Advanced Technology at Amada Miyachi America, Monrovia, CA. For more information, visit here .