Silicone elastomers are high-performance thermoset materials broadly used in diverse industries, including automotive, aerospace, electronics, consumer goods, and health care. They are recognized for their unique combination of properties, including high heat resistance, physiological inertness, and excellent electrical properties. One of the most desirable features of silicones is their ability to remain flexible and relatively unchanged over a wide range of temperatures, e.g., from –50 °C to 200 °C.

Beating the Heat
Because silicone rubber has low thermal conductivity, extensive heating is required to reach the center of thick wall profiles. This leads to high energy usage during vulcanization and generation of substantial waste heat. In comparison, ultraviolet (UV) curing is a photochemical process where UV radiation is used only to initiate the catalytic curing reaction, thereby reducing energy consumption. Since silicone is a UV transparent material, only the photosensitive catalysts absorb the UV radiation, so there is little production of waste heat.
Momentive Performance Materials Inc. (Albany, NY) recently developed an extrusion process utilizing patent-pending UV curing technology. This approach employs a photosensitive platinum catalyst, which, upon exposure to UV light, initiates the hydrosilylation reaction needed to cure the silicone rubber. The reaction proceeds vigorously at temperatures below 140 °F without substantial heat input. Traditional silicone elastomers can be readily modified to be compatible with this UV curing system, but Momentive also introduced the Addisil* UV 60 EX elastomer to specifically utilize the UV curing process.
The process was demonstrated in a pilot scale extrusion trial at a Momentive Performance Materials laboratory in Waterford, NY. Silicone compound containing a UV active catalyst was extruded through a tape die at room temperature and then passed through a UV chamber with a residence time of 0.5–2.0 seconds (Fig. 1). As displayed above in Table 1, the UV cured silicone elastomer offered properties comparable to those of a similarly prepared thermally cured elastomer.
The UV cure technology may allow energy savings and increased extrusion speed while maintaining the classic properties of silicone elastomers. As the cure is initiated through UV radiation, the degree of cure from skin to the core of the three-dimensional product is uniform, which allows high-speed extrusion of thick wall tubing and profile free from common defects such as internal porosity. The UV exposure time for the cure can be as short as 0.5 seconds, and a 10-inch length UV lamp will allow extrusion of silicone tubing at three to five times the rate of existing thermal curing systems. Since the cure occurs at relatively low temperature (under 140 °F), this new technology opens up the possibility of co-extrusion of silicones with other temperature-sensitive materials such as polyolefin and thermoplastic elastomers. Such co-extrusion is not possible with traditional thermally cured silicone elastomers.
Processing Advantages of UV Curing
Specialty Silicone Fabricators (SSF) (Paso Robles, CA) successfully trialed Momentive UV materials by extruding single and multi-lumen tubing with various wall thicknesses. SSF holds patents related to their Geo-Trans®* process technology, which employs computer aided sequencing that allows extrusion tooling, including the die and mandrel, to be manipulated such that cross-sectional geometries can be changed in fractions of a second within a short section of tubing. An example is shown in Fig. 2.
This Geo-Trans tube provided an important opportunity to evaluate the Momentive material and the UV process. In addition to its complex and variable cross-section, the tubing construct included pigmented areas as well as a barium sulfate stripe.
SSF extrusion engineers identified several processing advantages of the UV system that resulted in reduced production cost:
Increased throughput. SSF engineers were able to completely vulcanize the tube roughly 3× faster than with traditional thermal curing. Dimensional stability was excellent. In another example, relatively simple single lumen tubing was vulcanized at 100 feet per minute. Process optimization is expected to further improve throughput.






