About 30 neuroscientists and computer programmers got together earlier this year to improve their ability to read the human mind. This hackathon was one of several that researchers from Princeton University and Intel, the largest maker of computer processors, organized to build software that can tell what a person is thinking in real time, while the person is thinking it.

The collaboration between researchers at Princeton and Intel has enabled rapid progress on the ability to decode digital brain data, scanned using functional magnetic resonance imaging (fMRI), to reveal how neural activity gives rise to learning, memory, and other cognitive functions.

"The capacity to monitor the brain in real time has tremendous potential for improving the diagnosis and treatment of brain disorders as well as for basic research on how the mind works," said Jonathan Cohen, the Robert Bendheim and Lynn Bendheim Thoman Professor in Neuroscience, co-director of the Princeton Neuroscience Institute, and one of the founding members of the collaboration with Intel.

Since the collaboration's inception two years ago, the researchers have whittled the time it takes to extract thoughts from brain scans from days down to less than a second, said Cohen, who is also a professor of psychology.

One type of experiment that is benefiting from real-time decoding of thoughts occurred during the hackathon. The study, designed by J. Benjamin Hutchinson, a former postdoctoral researcher in the Princeton Neuroscience Institute who is now an assistant professor at Northeastern University, aimed to explore activity in the brain when a person is paying attention to the environment versus when his or her attention wanders to other thoughts or memories.

In the experiment, Hutchinson asked a research volunteer – a graduate student lying in the fMRI scanner – to look at a detail-filled picture of people in a crowded café. From his computer in the console room, Hutchinson could tell in real time whether the graduate student was paying attention to the picture or whether her mind was drifting to internal thoughts. Hutchinson could then give the graduate student feedback on how well she was paying attention by making the picture clearer and stronger in color when her mind was focused on the picture, and fading the picture when her attention drifted.

The ongoing collaboration has benefited neuroscientists who want to learn more about the brain and computer scientists who want to design more efficient computer algorithms and processing methods to rapidly sort through large data sets, according to Theodore Willke, a senior principal engineer at Intel Labs in Hillsboro, Oregon, and head of Intel's Mind's Eye Lab. Willke directs Intel's part of the collaborative team.